Pengertian Dan Fungsi Matematika Secara Umum

Pengertian Dan Fungsi Matematika Secara Umum

Pengertian Matematika

Matematika adalah studi besaran, struktur, ruang, dan perubahan. Para matematikawan mencari berbagai pola, merumuskan konjektur baru, dan membangun kebenaran melalui metode deduksi yang ketat diturunkan dari aksioma-aksioma dan definisi-definisi yang bersesuaian.

Terjadi perdebatan tentang apakah objek-objek matematika seperti bilangan dan titik sudah ada di semesta, jadi ditemukan, atau ciptaan manusia. Seorang matematikawan Benjamin Peirce menyebut matematika sebagai “ilmu yang menggambarkan simpulan-simpulan yang penting”. Namun, walau matematika pada kenyataannya sangat bermanfaat bagi kehidupan, perkembangan sains dan teknologi, sampai upaya melestarikan alam, matematika hidup di alam gagasan, bukan di realita atau kenyataan.

Dengan tepat, Albert Einstein menyatakan bahwa “sejauh hukum-hukum matematika merujuk kepada kenyataan, mereka tidaklah pasti; dan sejauh mereka pasti, mereka tidak merujuk kepada kenyataan.” Makna dari “Matematika tak merujuk kepada kenyataan” menyampaikan pesan bahwa gagasan matematika itu ideal dan steril atau terhindar dari pengaruh manusia.

Uniknya, kebebasannya dari kenyataan dan pengaruh manusia ini nantinya justru memungkinkan penyimpulan pernyataan bahwa semesta ini merupakan sebuah struktur matematika, menurut Max Tegmark. Jika kita percaya bahwa realita di luar semesta ini haruslah bebas dari pengaruh manusia, maka harus struktur matematika lah semesta itu.

Fungsi (Matematika)

Fungsi, dalam istilah matematika adalah pemetaan setiap anggota sebuah himpunan (dinamakan sebagai domain) kepada anggota himpunan yang lain (dinamakan sebagai kodomain). Istilah ini berbeda pengertiannya dengan kata yang sama yang dipakai sehari-hari, seperti “alatnya berfungsi dengan baik.” Konsep fungsi adalah salah satu konsep dasar dari matematika dan setiap ilmu kuantitatif. Istilah “fungsi”, “pemetaan”, “peta”, “transformasi”, dan “operator” biasanya dipakai secara sinonim.

Anggota himpunan yang dipetakan dapat berupa apa saja (kata, orang, atau objek lain), namun biasanya yang dibahas adalah besaran matematika seperti bilangan riil. Contoh sebuah fungsi dengan domain dan kodomain himpunan bilangan riil adalah y=f(2x), yang menghubungkan suatu bilangan riil dengan bilangan riil lain yang dua kali lebih besar. Dalam hal ini kita dapat menulis f(5)=10.

Notasi

Untuk mendefinisikan fungsi dapat digunakan notasi berikut.

f : A \rightarrow B

Dengan demikian kita telah mendefinisikan fungsi f yang memetakan setiap elemen himpunan A kepada B. Notasi ini hanya mengatakan bahwa ada sebuah fungsi f yang memetakan dua himpunan, A kepada B. Tetapi bagaimana tepatnya pemetaan tersebut tidaklah terungkapkan dengan baik. Maka kita dapat menggunakan notasi lain.

x \in A

f : x \rightarrow x^2

atau

f(x) =\, x^2

Fungsi sebagai relasi

Sebuah fungsi f dapat dimengerti sebagai relasi antara dua himpunan, dengan unsur pertama hanya dipakai sekali dalam relasi tersebut.

Domain dan Kodomain

Pada diagram di atas, X merupakan domain dari fungsi f, Y merupakan kodomain

Domain adalah daerah asal, kodomain adalah daerah kawan, sedangkan range adalah daerah hasil.

Sifat-sifat fungsi

Fungsi injektif

Fungsi f: A → B disebut fungsi satu-satu atau fungsi injektif jika dan hanya jika untuk sebarang a1 dan a2  \in A dengan a1 tidak sama dengan a2 berlaku f(a1) tidak sama dengan f(a2). Dengan kata lain, bila a1 = a2 maka f(a1) sama dengan f(a2).

Fungsi surjektif

Fungsi f: A → B disebut fungsi kepada atau fungsi surjektif jika dan hanya jika untuk sembarang b dalam kodomain B terdapat paling tidak satu a dalam domain A sehingga berlaku f(a) = b. Dengan kata lain, suatu kodomain fungsi surjektif sama dengan kisarannya (range).

Fungsi bijektif

Fungsi f: A → B disebut fungsi bijektif jika dan hanya jika untuk sebarang b dalam kodomain B terdapat tepat satu a dalam domain A sehingga f(a) = b, dan tidak ada anggota A yang tidak terpetakan dalam B. Dengan kata lain, fungsi bijektif adalah sekaligus injektif dan surjektif.

Leave a comment

Your email address will not be published. Required fields are marked *